skip to main content


Search for: All records

Creators/Authors contains: "Lacy, David C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 6, 2024
  2. Abstract

    Neutral three‐coordinate iron alkylidenes of the form PN−Fe=CHR have been proposed as viable candidates for alkene metathesis. Indeed, during the final stages of preparing this current study, a separate report disclosed that dearomatized PN−Fe‐alkyl complexes are active precatalysts for ring‐opening metathesis polymerization (ROMP) of norbornene implicating PN−Fe=CHR species as possible intermediates. In yet another separate report, we prepared Zn analogues of PN−Fe‐alkyl complexes and herein provide an account for the synthesis, characterization, and reactivity of some new iron complexes with the sametBu substituted PN platform.

     
    more » « less
  3. Abstract

    Dinuclear manganese hydride complexes of the form [Mn2(CO)8(μ‐H)(μ‐PR2)] (R=Ph,1; R=iPr,2) were used inE‐selective alkyne semi‐hydrogenation (E‐SASH) catalysis. Catalyst speciation studies revealed rich coordination chemistry and the complexes thus formed were isolated and in turn tested as catalysts; the results underscore the importance of dinuclearity in engendering the observedE‐selectivity and provide insights into the nature of the active catalyst. The insertion product obtained from treating2with (cyclopropylethynyl)benzene contains acis‐alkenyl bridging ligand with the cyclopropyl ring being intact. Treatment of this complex with H2affords exclusivelytrans‐(2‐cyclopropylvinyl)benzene. These results, in addition to other control experiments, indicate a non‐radical mechanism forE‐SASH, which is highly unusual for Mn−H catalysts. The catalytically active species are virtually inactive towardscistotransalkene isomerization indicating that theE‐selective process is intrinsic and dinuclear complexes play a critical role. A reaction mechanism is proposed accounting for the observed reactivity which is fully consistent with a kinetic analysis of the rate limiting step and is further supported by DFT computations.

     
    more » « less
  4. null (Ed.)